

Supplement of

Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015

Lei Sun et al.

Correspondence to: Likun Xue (xuelikun@sdu.edu.cn) and Yuhang Wang (yuhang.wang@eas.gatech.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 1. The model simulated monthly-mean MDA8 O₃ in July 2004 and July 2014

2 To further confirm the conclusions drawn from the comparison between 2003 and 2015, we also conducted model simulations for July 2004 and July 2014. Figure S2 shows the 3 comparison of observed versus simulated monthly-mean surface O₃ levels at six rural sites in 4 5 July 2004. The model captures well the observed O₃ concentrations at Mt Tai, SDZ, and Mt Hua, with only minor bias (-1.6–4.0 ppbv). In comparison, the model tends to overestimate 6 7 the O₃ levels at Mt Huang, Lin'an and Cape D'Aguilar. Figure S8 shows similar spatial 8 distributions of MDA8 O₃ over CEC in July 2003, 2004, 2014 and 2015. In July 2004, the regions with MDA8 O₃ >75 ppbv moved to the south of North China Plain compared to July 9 10 2003, mostly due to the different atmospheric circulation patterns. The regional mean MDA8 O_3 in July 2004 is 67.8±6.2 ppbv, a little higher than that in July 2003 (65.5±7.9). The 11 12 regional mean MDA8 O₃ in July 2014 is 74.8±9.8 ppbv, which is comparable to that in July 2015 (74.4±8.7 ppbv). We can find the significant increases of MDA8 O₃ from 2004 to 2014 13 as well as from 2003 to 2015. The different concentrations and spatial distributions of O₃ 14 between 2003 and 2004 (as well as between 2014 and 2015) should be mostly due to the 15 16 inter-annual variability in meteorological conditions. Overall, the modelling results in 2004 and 2014 supported the major conclusions derived from 2003 and 2015. 17

18 2. The model simulated monthly-mean MDA8 O₃ in August 2003 and August 2015

19 Figure S9 shows the spatial distributions of MDA8 O₃ in August 2003 and August 2015. In 20 August 2003, there is no region with monthly-mean MDA8 O₃ >75 ppbv. In August 2015, the region with monthly-mean MDA8 $O_3 > 75$ ppbv is comparable to that in July 2015, but the O_3 21 22 levels are generally lower than those in July 2015. The regional mean MDA8 O₃ in August 23 2003 and August 2015 are 63.4±4.9 and 73.8±5.0 ppbv, yielding an increase of 10.4 ppbv. 24 The regional mean MDA8 O₃ during July-August of 2003 and 2015 are 64.5±6.4 and 25 74.1±6.8 ppby, giving a comparable increase of 9.6 ppby from 2003 to 2015. The difference 26 in the regional mean MDA8 O₃ between July and August of 2003 is 2.1 ppbv, a little higher 27 than that between July and August in 2015 (0.6 ppbv). Such levels are much lower than the 28 difference between 2003 and 2015. Overall, the modelling results in August of 2003 and 2015 29 supported the major conclusions derived from July 2003 and July 2015.

1 3. Spatial distributions of the modelled O₃ precursors over CEC in July 2003 and 2015

Figure S1. Locations of rural/regional baseline sites (red triangle) and the capital of each
province in Central Eastern China (green dot). The blue rectangle represents the Central
Eastern China region.

2 Figure S2. Comparison of observed versus simulated monthly-mean O₃ concentrations at the

3 six rural sites in July 2004.

Figure S3. (a) Time series of observed and simulated O_3 concentrations at Mt Tai in July 2003. (b) Diurnal variations of observed and simulated O_3 at Mt Tai in July 2003. Error bars indicate the standard deviation of the mean.

2 Figure S4. Time series of surface O₃ in July 2015 at nine air quality monitoring stations in

3 different provinces: (a) Dingling in Beijing, (b) Tuanbowa in Tianjin, (c) Kegansuo in Ji'nan,

4 Shandong, (d) Jinsheng in Taiyuan, Shanxi, (e) Ganli Shuiku in Zhengzhou, He'nan, (f)

5 Zhuankou in Wuhan, Hubei, (g) Jinyunshan in Chongqing, (h) Hu'nan Shifan in Changsha,

6 Hu'nan and (i) Xianlin in Nanjing, Jiangsu.

Figure S5. Observed and simulated monthly-mean diurnal variations of surface O₃ in July
2015 at representative air quality monitoring stations in nine cities.

Figure S6. Observed and simulated monthly-mean diurnal variations of surface CO in July 2015 at monometation air matrice stations in mine sitism.

3 2015 at representative air quality monitoring stations in nine cities.

Figure S7. Observed and simulated monthly-mean diurnal variations of surface NO₂ in July
2015 at representative air quality monitoring stations in nine cities.

Figure S8. Monthly mean spatial distributions of surface MDA8 O_3 in July over East China. (a) 03E03M: 2003 standard simulation; (b) 04E04M: 2004 standard simulation; (c) 14E14M: 2014 standard simulation and (d) 15E15M: 2015 standard simulation. Black contours indicate the regions with MDA8 $O_3 > 75$ ppbv. Filled circles in (d) show the observed MDA8 O_3 at 115 sites of the network of Chinese National Environmental Monitoring Center in July 2015. The red rectangle represents the Central Eastern China region (CEC: 103°E-120°E, 28°N-40°N).

10 Figure S9. Monthly mean spatial distributions of surface MDA8 O₃ in August over East

11 China. (a) 03E03M: 2003 standard simulation and (b) 15E15M: 2015 standard simulation.

- 12 Black contours indicate the regions with MDA8 $O_3 > 75$ ppby. The red rectangle represents
- 13 the Central Eastern China region (CEC: $103^{\circ}E-120^{\circ}E$, $28^{\circ}N-40^{\circ}N$).

Figure S10. Monthly mean spatial distributions of surface NO₂ in July over CEC: (a)-(d) and
the differences in NO₂ concentrations between these simulations: (e)-(h). The red rectangle

the differences in NO₂ concentrations between these simulations: (e)-(h). The
represents the Central Eastern China region (CEC: 103°E-120°E, 28°N-40°N).

Figure S11. Monthly mean spatial distributions of surface NMVOCs in July over CEC: (a)-(d)
and the differences in NMVOC concentrations between these simulations: (e)-(h). The
concentrations of NMVOCs include: ALK4 (lumped >=C4 Alkanes), Isoprene, Acetone,
Methyl Ethyl Ketone, Acetaldehyde, RCHO (lumped Aldehyde >=C3), PRPE (lumped >=C3
Alkenes), Formaldehyde, Hydroxyacetone and Glycoaldehyde. The red rectangle represents
the Central Eastern China region (CEC: 103°E-120°E, 28°N-40°N).

Figure S12. Monthly mean geopotential heights at 850 hPa in July of 2003 and 2015 from
 MERRA-2 meteorological field.

Figure S13. Monthly mean wind fields at 850 hPa and at surface in July of 2003 and 2015
based on the MERRA-2 meteorological field.

3

Figure S14. Monthly mean temperature and relative humidity on surface layer in July of 2003 and 2015 based on the MERRA-2 meteorological field.

4

5 Figure S15. Anthropogenic emissions of NOx in (a) July 2003 and (b) July 2015 and

NMVOCs in (c) July 2003 and (d) July 2015. Unit: Mg/Km²/mon for NOx; Mg(C)/Km²/mon
 for NMVOCs. The red rectangle represents the Central Eastern China region. The emission

8 data in 2003 are taken from MEIC (2008) and scaled to 2003 by using annual scale factors

1 from REAS-v2. The emission data in 2015 are taken from MEIC (2014) directly.

3 Figure S16. Spatial distributions of changes in NOx (a) and NMVOCs (b) emissions between

- 4 July 2003 and July 2015 (2015-2003). Unit: Mg/Km²/mon for NOx; Mg(C)/Km²/mon for
- 5 NMVOCs. The red rectangle represents the Central Eastern China region. The emission data
- 6 in 2003 are taken from MEIC (2008) and scaled to 2003 by using annual scale factors from
- 7 REAS-v2. The emission data in 2015 are taken from MEIC (2014) directly.